Search results for "superconducting phase transition"
showing 5 items of 5 documents
Mean-field theory for superconductivity in twisted bilayer graphene
2018
Recent experiments show how a bilayer graphene twisted around a certain magic angle becomes superconducting as it is doped into a region with approximate flat bands. We investigate the mean-field s-wave superconducting state in such a system and show how the state evolves as the twist angle is tuned, and as a function of the doping level. We argue that part of the experimental findings could well be understood to result from an attractive electron-electron interaction mediated by electron-phonon coupling, but the flat-band nature of the excitation spectrum also makes the superconductivity quite unusual. For example, as the flat-band states are highly localized around certain spots in the st…
Superfluid weight and Berezinskii-Kosterlitz-Thouless transition temperature of twisted bilayer graphene
2019
We study superconductivity of twisted bilayer graphene with local and non-local attractive interactions. We obtain the superfluid weight and Berezinskii-Kosterlitz-Thouless (BKT) transition temperature for microscopic tight-binding and low-energy continuum models. We predict qualitative differences between local and non-local interaction schemes which could be distinguished experimentally. In the flat band limit where the pair potential exceeds the band width we show that the superfluid weight and BKT temperature are determined by multiband processes and quantum geometry of the band.
Mean-field theory for superconductivity in twisted bilayer graphene
2018
Recent experiments show how a bilayer graphene twisted around a certain magic angle becomes superconducting as it is doped into a region with approximate flat bands. We investigate the mean-field $s$-wave superconducting state in such a system and show how the state evolves as the twist angle is tuned, and as a function of the doping level. We argue that part of the experimental findings could well be understood to result from an attractive electron--electron interaction mediated by electron--phonon coupling, but the flat-band nature of the excitation spectrum makes also superconductivity quite unusual. For example, as the flat-band states are highly localized around certain spots in the st…
Superconducting size effect in thin films under electric field: Mean-field self-consistent model
2019
We consider effects of an externally applied electrostatic field on superconductivity, self-consistently within a BCS mean field model, for a clean 3D metal thin film. The electrostatic change in superconducting condensation energy scales as $\mu^{-1}$ close to subband edges as a function of the Fermi energy $\mu$, and follows 3D scaling $\mu^{-2}$ away from them. We discuss nonlinearities beyond gate effect, and contrast results to recent experiments.
Odd triplet superconductivity induced by a moving condensate
2020
It has been commonly accepted that a magnetic field suppresses superconductivity by inducing the ordered motion of Cooper pairs. We demonstrate that a magnetic field can instead provide a generation of superconducting correlations by inducing the motion of a superconducting condensate. This effect arises in superconductor/ferromagnet heterostructures in the presence of Rashba spin-orbital coupling. We predict the odd-frequency spin-triplet superconducting correlations called the Berezinskii order to be switched on at large distances from the superconductor/ferromagnet interface by the application of a magnetic field. This is shown to result in the unusual behavior of Josephson effect and lo…